r-'----------—-—-————————-A

AD-A284
HM’IWWMH’HI’

Final Report to ONR
on Parallel Computation

K. Mani Chandy
California Institute of Technology

September 6, 1994

S

I DT

ELECTE}
SEP 2 1 |994F
g

F

This decumeat bas besa approved |
fer p}_.\bhc telzcse and :zle; its
distributior 15 vzilmired)

94—30199
BINERANI o/ 94 ©

Mani Chandy

California Institute of Technology
(818) 356-6559
mani@vlsi.caltech.edu

Parallel Computation

Navy Grant No. N00014-89-J-3201
Reporting Period: Final Report

Productivity Measures

1. Refereed Papers Submitted but not yet published: 0
Refereed Papers Published: 6

Refereed Papers to appear: 1

Unrefereed Reports: 1 -
Book Chapters : 0 T . 3

Books published: 1 C i
Patents filed: 0 L S

Invited Presentations: 6 S

© @ N B o e W N

Honors: 0 . RPN
. Prizes: 0

. Promotions Obtained: 0 \ﬂ'(“ 1
L 1

. Graduate students supported: 3

—
o
!
— !
}
c i
|
'___’_________.‘

e e T
W N =

. Postdocs supported: 0

[
'S

. Minorities supported: 0

2 it ol sl Bk sre iR T el '
DIICQUAL T seZorrn

Mani Chandy

California Institute of Technology
(818) 356-6559
mani@vlsi.caltech.edu

Parallel Computation

Navy Grant No. N00014-89-J-3201
FinalReport

Technical Progress

Problem Areas

In this project we have worked on three problems: (a) designing a theory of the
modular design of parallel reactive systems, and (b) an application of parallel sys-
tems of importance to the Navy — parallel discrete-event simulation, and (c) parallel
languages that integrate task and data parallelism.

Modular Design and PCN

Consider a reactive system of the following type. Data is fed to the system from
many sensors distributed over some geographical region. The system processes the
data and then sends responses to actuators that are also distributed. Processing
the data requires numeric scientific computation, symbolic computation (such as tree
searching) for evaluating alternatives, and use of sizable human interfaces. The system
may call programs from existing libraries in C, Fortran and other languages. We
developed theory and tools to build such a distributed system in a systematic way so
as to ensure that the system is reliable and that it satisfies its specifications.

My specific goal for this grant is to develop a theory that forms the framework for
designing compositional systems: systems that can be built by putting subsystems
together in a small number of well-defined ways. This theory was used to build a
compositional programming notation, called PCN — Program Composition Notation.
PCN has been implemented by a group at Caltech and Argonne, funded by ONR,
AFOSR and NSF. PCN was developed by Stephen Taylor at Caltech and myself with

support from lan Foster at Argonne Naticaal Laboratories and Carl Kesselman at
Aerospace Corp.

PCN is available by anonymous FTP, and it is being used to develop real par-
allel applications in climate modeling, modeling air-pollution, computational fluid
dynamics, and biology. The grant from ONR was used specifically for developing the
theoretical foundations underly: - ¥CN.

The theory for PCN was p. - :.” 'n a book written by Steve Taylor and myself.

Lessons from PCN PCN has a simp! - theory, aad the notation is straightforward.
Nevertheless, we found that many scientific application programmers were unwilling
to try PCN, though computer scientists were auite ready to use the system. The
appeal to computer scientists — theoretical foundation, simplicity, transportability
— were of less importance to computational scientists. Specific 2bjections from com-
putational scientists, most of whom program using Fortran 77 were:

1. Parallelizing a Fortran program using PCN requires that the Fortran program
be decomposed into subroutines, each of which is then called from PCN. Pro-
grammers want to parallelize only the subroutines that are compute-intensive,
and they want to leave the remainder of their programs untouched. They cannot
do this in PCN,

2. PCN does not have iteration; it uses recursion instead. This is a hurdle, though
a minor one, for Fortran programmers.

3. The data types of PCN (such as tuples) are borrowed from functional and logic
programming, and are strange to Fortran programmers. Likewise, the syntax is
strange to computational scientists brought up on Fortran.

We decided to transport those aspects of PCN that computer scientists liked
to the Fortran 77 domain. The effort on this project was directed at developing
a new theory for a modular Fortran notation — called Fortran M — developed at
Caltech and Argonne National Laboratories. Fortran M is a simple extension of
Fortran 77, using ideas from object-oriented programming and PCN. It has been
implemented on shared-memory systems, and it will be implemented on distributed-
memory systems in the coming year. Fortran M is designed so that debugging parallel
programs is simplified significantly: in particular, the constructs of Fortran M are

placed into one of two categories — deterministic or nondeterministic — and by
using only deterministic constructs programmers can guarantee that multiple runs of
the same program with the same inputs will produce the same output whether it is
executed on a single node or on a network. Therefore, programmers can debug their
programs on a workstation, and then confidently execute the program on a parallel
machine.

A theory of communicating processes was developed, that forms the foundation
for Fortran M. The theory deals with:

1. Proving that multiple executions of the program with the same input will pro-
duce the same output.

2. Verifying parallel programs by extending the theory for sequential program
verification.

3. Compositional (or modular) development of parallel programs, where specifica-
tions of programs are derived from specifications (and not implementations) of
its components.

ONR support was used specifically for the theoretical aspects of Fortran M. The im-
plementation of the compiler was carried out with support from the National Science
Foundation Center for Research in Parallel Computing,.

Parallel Languages Integrating Task and Data Parallelism

I worked with Prof. Rajive Bagrodia from UCLA to develop extensions of C for task
and data parallelism. An integrated task and data parallel language called UC (for
Universal C) has been developed. UC compilers for the CM2 are available over the
network. UC compilers for networks of workstations will be available in a year.

Universal C The central idea of UC is indez_sets. Data-parallel operations can be
thought as paralle] operations on all elements of an array indexed through an index
set. A central aspect of UC is its simplicity, and the ease of learning UC for people
familiar with C.

Prof. Bagrodia and I extended UC to handle task-parallelism. This is done by
introducing channels in a novel way. In conventional approaches, channels are directed

from a process to another process. Since UC does not have processes, channels in
UC are shared data structures between virtual processors. UC supports multiple
different tasks, each of which is a data parallel program. Task and data parallel
integration are important to DoD for applications such as command and control
systems, multidisciplinary designs such as designs of launch vehicles, and for complex
scientific simulations such as ocean models.

Maisie We also worked on Maisie, a language that can be used either for simulation
or for parallel implementation, with a smooth transition from simulation to parallel
execution. The central idea behind Maisie is to allow programmers to first simulate
a concurrent system and carry out performance optimization and debugging in sim-
ulation mode, and then transform the simulation into a parallel implementation in a
sequence of small steps.

Distributed Simulation

Space-Time We also developed a unifying theory for parallel discrete-event simu-
lation. The known methods of discrete-event simulation fit into the theory, and the
theory can be used to develop new simulation algorithms. We used the theory to
develop a new algorithm, called Space-Time, implemented the algorithm, and showed
that it is efficient.

The unifying theory allows for the implementation of discrete-event simulation
systems that can be tailored to specific types of algorithms within the general theory.
For instance, if battle management simulations require optimistic algorithms, then
space-time can be run in optimistic mode. If circuit simulations perform better using
conservative algorithms, then space-time can be used in a conservative mode.

We implemented the space-time algoirthm, and several applications have been
developed using the space-time system.

Mani Chandy

California Institute of Technology
(818) 356-6559
mani@vlsi.caltech.edu

Parallel Computation

Navy Grant No. N00014-89-J-3201
Final Report

Lists of Publications

¢ K. M. Chandy “ Reasoning About Continuous Systems”, Science of Computing,
Vol. 14, No. 3, Special Issue on Mathematics of Program Construction, pp 117
- 132, Oct. 1990.

e K. M. Chandy and S. Taylor, “ The Composition of Concurrent Programs”,
Proceedings of Supercomputing 90, Reno, Nevada, Nov. 13-17.

o R. Bagrodia and S. Mathur, “ Efficient Implementation of High-Level Parallel
Programs”, Proc. on {th International Conf. on ACM Conference on Architec-
tural Support for Parallel Languages and Operating Sytems, 1990 pp 142-151

¢ R. Bagrodia, M.Chandy, Edmund Kwan, “UC: A Language for the Connection
Machine” Proc. Supercomputing 90, page 525-534. New York.

e K. M. Chandy and S. Taylor An Introduction to Parallel Programming, Jones
and Bartlett, Boston, Mass, 1991.

e R. Bagrodia, M.Chandy, Wen-Toh Liao, “An experimental study on the per-
formance of the space-time algorithm” Proceedings, Workshop on Parallel and
Distributed Simulation, Society. for Computer Simulation January 1992.

¢ R. Bagrodia, M.Chandy, Wen-Toh Liao, “A Unifying Framework for Distributed
Simulation,” ACM Transactions on Modeling and Computer Simulation, Octo-
ber 1992.

o K. M. Chandy “ A Theory of Program Composition” Chapter in Nato Summer
Schools Series on Mathematics of Program Construction, Springer Verlag, 1991.

e V. Austel, R. Bagrodia, M. Chandy, and M. Dhagat, “A Data-Parallel Extension
of C”, to appear Journal of Parallel and Distributed Computing, 1995.

Mani Chandy

California Institute of Technology
(818) 356-6559
mani@vlsi.caltech.edu

Paralle] Computation

Navy Grant No. N00014-89-J-3201
Final Report

DoD Interactions

My research group has been working closely with Aerospace Corporation, a nonprofit
organization that works for the Air Force Space Division, and with Argonne National
Laboratory and the University of California at Los Angeles.

Our joint work with Aerospace Corporation has been successful. This work has
two parts. Firstly, the conversion of Aerospace sequential applications in Fortran or
C to parallel programs in PCN, and secondly the development of tools by Aerospace
Corp. to aid in the development of PCN programs. The specific Aerospace sequential
applications that were developed are:

1. Computing optimal trajectories of the space shuttle and other spacecraft. This
is a problem in optimization and differential equations. Subroutines of the orig-
inal Fortran program were composed in PCN and executed with substantial
speedups on the Sequent Symmetry. A paper on this work has been published
by Aerospace employees:

Twain K. Summerset and Raymond M. Chowkwanyun, “Trajectory Optimiza-
tion on Multiprocessors” Technical Report, Aerospace Corporation, 1990.

2. Tracking multiple space vehicles. The Aerospace Corporation had a program,
mostly in C, for the tracking application. Subroutines from this program have
been composed in PCN to get a multicomputer implementation.

Aerospace scientists have also been developing a parallel program in PCN for a com-
putational fluid dynamic model of a Titan rocket motor. The Aerospace contact for
the joint work is Dr. Mel Cutler.

Carl Kesselman of Aerospace Corp. developed a performance monitoring tool
called Gauge, which is critical for making PCN a useful parallel programming envi-
ronment.

Cooperation with Argonne National Laboratories has been succesful in developing
a runtime system for PCN, as well as applications in weather modeling. Sequential
code for weather modeling has been successfully parallelized in PCN. The Argonne
contact for the joint work is Dr. lan Foster.

Cooperation with UCLA has dealt with extending PCN to data parallel machines
such as the Connection Machine. This cooperation has resulted in an implementation
on a Connection Machine; performance experiments show that the implementation is
at least as efficient as C* for a variety of problems. The UCLA contact for the joint
work is Dr. Rajive Bagrodia.

My research group has been working with Aerospace Corporation, a nonprofit
organization that works for the Air Force Space Division, and with Argonne National
Laboratory and the University of California at Los Angeles.

The joint work with Aerospace Corp., in the last year has dealt with using PCN
to develop parallel programs for a computational fluid dynamics application. The
particular application deals with studying shocks in rocket motors. A PCN code
for this application is now running at Aerospace on a Sequent Symmetry. Copies
of visuals produced by Aerospace of simulations of different shapes can be obtained
from Dr. Craig Lee of Aerospace Corporation, El Segundo, California.

Cooperation with Argonne National Laboratories has resulted in the development
of parallel climate models in PCN that run on the Intel Touchstone Delta. The
Argonne contact for the joint work is Dr. lan Foster.

The theory of communicating processes was developed jointly with lan Foster of
Argonne National Laboratories.

The work on distributed simulation forms the theoretical foundation for work at
ATT on parallel simulation of circuit switched networks. This work was carried out
by Eick, Greenberg, Lubachevsky and Weiss.

10

Mani Chandy

California Institute of Technology
(818) 356-6559
mani@vlsi.caltech.edu

Parallel Computation

Navy Grant No. N00014-89-J-3201
Final Report

Prototypes

PCN is available by anonymous FTP from Argonne National Laboratories at mcs.anl.gov.
Details are obtained from tuecke@mcs.anl.gov.
PCN has been used for a variety of applications. Because of its simplicity, PCN
has been widely used as a language for teaching introductory parallel programming.
Fortran M is also available by anonymous FTP from Argonne. Fortran M has
been used for climate models and other applications, but it is too early for commercial
development.

11

